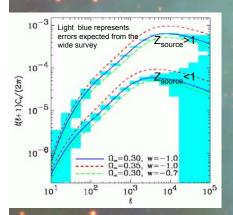
Weak Lensing with SNAP

Jason Rhodes (Caltech) and the SNAP Collaboration

rhodes@astro.caltech.edu

Weak gravitational lensing is a small distortion in background galaxy shapes and sizes caused by foreground dark matter. Weak lensing can provide tight constraints on the amount (Ω_M) and clustering (σ_8) of dark matter. Tomographic techniques allow for the study of the evolution of structure which is determined by the dark energy equation of state parameter (w) and its time evolution (w_a). Space offers significantly higher resolution and better photometric accuracy than the ground, allowing for better shape measurements, higher photo-z accuracy, and measurements of a significant fraction of galaxy shapes at z>1.

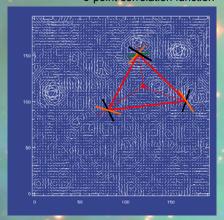
> 15 sq degree Deep SN Survey


300-1000 sq degree Weak Lensing Survey 5000-10000 sq degree Panoramic Survey

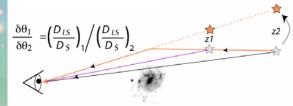
- SNAP Surveys: 9 optical and NIR bands •9 optical and NIR bands •9 optical and NIR bands
 - •AB=30.0 •AB=27.5
- Possible 2-4 year survey

- •N_{gal}=200 arcmin⁻² •10 million galaxies
- •N_{gal}≈100 arcmin⁻² •N_{gal}≈40-80 arcmin⁻² •100-200 million galaxies •Up to one billion galaxies

Techniques:


Measurement of the mass power spectrum in 2 redshift bins

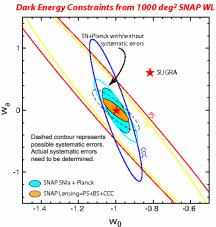
Rhodes et al, 2004 Astroparticle Physics in press Massey et al astro-ph/0304418 Refregier et al astro-ph/0304419


Measurement of bispectrum and higher order correlation **functions**

3-point correlation function

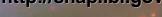
Takada and Jain astro-ph/0310125

Cross Correlation Cosmography



Jain and Taylor, 2003, PRL, 91, 141302; Bernstein and Jain, 2004, ApJ in press

- Identify foreground structures, crosscorrelate with background slices at various redshifts
- Uncorrected PSF shapes average to zero when cross-correlated with foreground
- Non-linear power spectrum irrelevant so information from all scales is useful
- Systematic errors still under invesitgation


See also Song and Knox astro-ph/0312175; Zhang, Hui, & Stebbins astro-ph/0312348

Cosmological constraints:

Central star is ACDM SUGRA=supergravity PS= Power Spectrum BS=Bispectrum CCC=Cross Correlation Cosmography

http://snap.lbl.gov

